NOTA: Existen diversas maneras de llegar a la solución de ejercicios, aquí se les muestra una de ellas con sus respectivos pasos a seguir

1. $-\sqrt{-25}$

SOLUCION:

$\sqrt{-25}$ no es un número real, puesto que no existen en el conjunto de los reales un número que al multiplicarse por sí mismo dos veces nos resulte un número negativo. Así que no existe solución alguna de esta expresión en el sistema de los números reales.

2. $-\sqrt[3]{-64}$

SOLUCION:

$-\sqrt[3]{-64} = -\sqrt[3]{(-4)^3} = -(-4)^{3/3} = -4$ (Expresando el radical como potencia de exponente racional)

3. $\frac{\sqrt[3]{-216}}{\sqrt[3]{512}}$

SOLUCION:

$$\frac{\sqrt[3]{-216}}{\sqrt[3]{512}} = \frac{-6}{8} \left(\sqrt[3]{-216} = -6 \text{ por que } (-6)^3 = -216 \quad \sqrt[3]{512} = 8 \text{ por que } (8)^3 = 512 \right)$$

Simplificando: $\frac{-6}{8} = \frac{-3}{4}$
4. \(\frac{\sqrt{8}}{\sqrt{242}} \)

SOLUCION:

Simplificamos primero la fracción que está dentro del radical así:

\[
\frac{\sqrt{8}}{\sqrt{242}} = \frac{\sqrt{4}}{\sqrt{121}}
\]

Luego aplicamos propiedad del radical de un cociente y hallamos las raíces indicadas

\[
\frac{\sqrt{4}}{\sqrt{121}} = \frac{\sqrt{4}}{\sqrt{121}} = \frac{2}{11}
\]

5. \(3\sqrt[3]{125} \sqrt[10]{100} \)

SOLUCION:

- Como ambas raíces tienen el mismo índice aplicamos propiedad de producto de raíces

\[
\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}
\]

\[
3\sqrt[3]{125} \sqrt[10]{100} = 3\sqrt[3]{125000} = 50
\]

- Otra manera de evaluar la expresión aplicando la propiedad \(\sqrt[3]{ab} = \sqrt[3]{a} \sqrt[3]{b} \) y luego viceversa \(\sqrt[3]{a} \sqrt[3]{b} = \sqrt[3]{ab} \)

\[
3\sqrt[3]{1250 \sqrt[10]{100}} = \sqrt[3]{125} \cdot 10 \sqrt[10]{100} = \sqrt[3]{125} \sqrt[10]{10} \sqrt[10]{100} = 5 \sqrt[10]{1000} = 5 \cdot 10 = 50
\]

6. \(3\sqrt[2]{729} \)

- \(3\sqrt[3]{729} = \sqrt[3]{27} = 3 \) (hallamos primero la raíz que está en el radicando)

- Otra manera aplicando la propiedad \(\sqrt[n]{\sqrt[m]{a}} = \sqrt[m]{\sqrt[n]{a}} \)

\[
3\sqrt[2]{729} = \sqrt[6]{729} = 3
\]
Simplifique las siguientes expresiones aplicando las propiedades de radicales

7. \(\sqrt{75} + 3\sqrt{20} - 2\sqrt{45}\)

SOLUCION:

\[
\sqrt{75} + 3\sqrt{20} - 2\sqrt{45} = \sqrt{5^2 \cdot 3} + 3\sqrt{2^2 \cdot 5} - 2\sqrt{3^2 \cdot 5} \quad \text{(Descomponiendo en Factores primos)}
\]

\[
= \sqrt{5^2 \cdot 3} + 3\sqrt{2^2 \cdot 5} - 2\sqrt{3^2 \cdot 5} \quad \text{(Propiedad de producto de radicales)}
\]

\[
= (5^{2/2})\sqrt{3} + (3 \cdot 2^{2/2})\sqrt{5} - (2 \cdot 3^{2/2})\sqrt{5} \quad \text{(Escribiendo radical como exponente racional)}
\]

\[
= 5\sqrt{3} + 6\sqrt{5} - 6\sqrt{5} \quad \text{(Resolviendo operaciones)}
\]

\[
= 5\sqrt{3}
\]

8. \(\sqrt{800} + 2\sqrt{27} - 2\sqrt{32} + 7\sqrt{363}\)

SOLUCION:

\[
\sqrt{800} + 2\sqrt{27} - 2\sqrt{32} + 7\sqrt{363}
\]

\[
= \sqrt{2^4 \cdot 5^2 \cdot 2} + 2\sqrt{3^2 \cdot 3} - 2\sqrt{2^4 \cdot 2} + 7\sqrt{11^2 \cdot 3} \quad \text{(descomponiendo en factores primos)}
\]

\[
= \sqrt{2^4 \cdot 5^2 \cdot 2} + 2\sqrt{3^2 \cdot 3} - 2\sqrt{2^4 \cdot 2} + 7\sqrt{11^2 \cdot 3} \quad \text{(propiedad de producto de radicales)}
\]

\[
= (2^{4/2})(5^{2/2})\sqrt{2} + 2(3^{2/2})\sqrt{3} - 2(2^{4/2})\sqrt{2} + 7(11^{2/2})\sqrt{3} \quad \text{(Expresando el radical como una potencia con exponente racional)}
\]

\[
= 20\sqrt{2} + 6\sqrt{3} - 8\sqrt{2} + 77\sqrt{3} \quad \text{(Resolviendo operaciones)}
\]

\[
= (20\sqrt{2} - 8\sqrt{2}) + (6\sqrt{3} + 77\sqrt{3}) \quad \text{(Aplicando propiedad asociativa)}
\]

\[
= (20 - 8)\sqrt{2} + (6 + 77)\sqrt{3} \quad \text{(Aplicando prop distributiva y resolviendo operaciones)}
\]

\[
= 12\sqrt{2} + 83\sqrt{3}
\]
9. \((3\sqrt{1024} - \sqrt{300}) - (\sqrt{2} + \sqrt{363})\)

SOLUCION:

\((3\sqrt{1024} - \sqrt{300}) - (\sqrt{2} + \sqrt{363})\)

= \(3 \sqrt{2^9 \cdot 2} - \sqrt{2^{2} \cdot 5^5 \cdot 3}\) - \(\sqrt{2} + \sqrt{11^2 \cdot 3}\) (descomponiendo en factores primos)

= \(2^{9/2} \sqrt{2} - \sqrt{2^2 \cdot 5^2 \cdot 3} - \sqrt{2} - \sqrt{11^2 \cdot 3}\) (propiedad de producto de radicales)

= \((2^{9/3})^{\sqrt{2}} - (2^{2/3})(5^{2/3})\sqrt{3} - \sqrt{2} - (11^{2/3})\sqrt{3}\) (Expresando el radical como una potencia con exponente racional)

= \((2^{3 \cdot \sqrt{2}} - \sqrt{2}) - ((2 \cdot 5)\sqrt{3} + 11\sqrt{3})\) (Resolviendo operaciones y aplicando p asociativa)

= \((8 - 1)\sqrt{2} - (10 + 11)\sqrt{3}\) (Aplicando prop distributiva y resolviendo operaciones)

= \(7\sqrt{2} - 21\sqrt{3}\)

10. \(\sqrt{7}\sqrt{28} + 15\sqrt{32}\sqrt{128}\)

SOLUCION:

\(\sqrt{7}\sqrt{28} + 15\sqrt{32}\sqrt{128} = \sqrt{196} + 15\sqrt{4096}\) (propiedad de producto de radicales y resolviendo operaciones)

= \(14 + 15(64) = 974\)

11. \(\sqrt{\frac{48}{\sqrt{3}}} - \sqrt{45\sqrt{5}} + 3\sqrt{1458}\)

SOLUCION:

\(\sqrt{\frac{48}{\sqrt{3}}} - \sqrt{45\sqrt{5}} + 3\sqrt{1458} = \sqrt{16} - \sqrt{225} + \sqrt{1458}\) (propiedad de producto y cociente de radicales)

= \(4 - 15 + \sqrt{3^{6} \cdot 2^2}\) (Descomponiendo en factores primos)

= \(-11 + \sqrt{3^{6} \cdot 2^2}\) (propiedad de producto de radicales)

= \(-11 + 3^{6/3} \sqrt{2}\) (Expresando el radical como una potencia con exponente racional)
= −11 + 9√2 (Resolviendo operaciones)
= 9√2 − 11

12. \(\frac{\sqrt{50} + 15\sqrt{8} - 14\sqrt{32}}{3\sqrt{2}}\)

SOLUCIÓN:

\[
\frac{\sqrt{50} + 15\sqrt{8} - 14\sqrt{32}}{3\sqrt{2}} = \frac{\sqrt{5^2 \cdot 2 + 15\sqrt{2^2 \cdot 2} - 14\sqrt{2^4 \cdot 2}}}{3\sqrt{2}} \quad \text{(Descomponiendo en factores primos)}
\]

\[
= \frac{\sqrt{5^2 \cdot 2 + 15\cdot 2\sqrt{2} - 14\cdot 4\sqrt{2}}}{3\sqrt{2}} \quad \text{(Propiedad de un producto)}
\]

\[
= \frac{5\sqrt{2} + 15\cdot 2\sqrt{2} - 14\cdot 4\sqrt{2}}{3\sqrt{2}} \quad \text{(Resolviendo raíces)}
\]

\[
= \frac{5\sqrt{2} + 30\sqrt{2} - 56\sqrt{2}}{3\sqrt{2}} \quad \text{(Resolviendo operaciones)}
\]

\[
= \frac{-21\sqrt{2}}{3\sqrt{2}} = -7
\]

13. \(5\sqrt{96} + 7\sqrt{3} - 2\sqrt[5]{\frac{3}{32}}\)

SOLUCIÓN:

\[
\sqrt[5]{96} + 7\sqrt[3]{3} - 2\left(\sqrt[5]{\frac{3}{32}}\right) = \sqrt[5]{2^5 \cdot 3} + 7\sqrt[3]{3} - 2\left(\frac{\sqrt[5]{3}}{\sqrt[5]{2}}\right) \quad \text{(Descomponiendo en factores primos y aplicando Propiedad del radical de un cociente)}
\]

\[
= \sqrt[5]{2^5 \sqrt[3]{3} + 7\sqrt[3]{3} - 2\left(\sqrt[5]{3}\right)} \quad \text{(Aplicando Propiedad de radical de un producto y resolviendo raíces.)}
\]

\[
= 2\sqrt[5]{3} + 7\sqrt[3]{3} - \sqrt[5]{3}
\]

\[
= (2 + 7 - 1)\sqrt[3]{3} \quad \text{(Aplicando propiedad distributiva y resolviendo operaciones.)}
\]

\[
= 8\sqrt[3]{3}
\]
Simplifique y escriba los radicales en forma exponencial

14. \((5\sqrt{x^2})(12^3\sqrt{x^6})\)

SOLUCION:

\[
(5\sqrt{x^2})(12^3\sqrt{x^6}) = (5x)(12x^2) (\text{Resolviendo raíces})
\]

\[= 60x^3 \text{ (aplicando producto de potencias de igual base)} \]

15. \(\left(\sqrt[3]{y^2}\sqrt{y^6}\right)\left(\frac{\sqrt[4]{y^4}}{\sqrt[6]{y^6}}\right)\)

SOLUCION:

\[
\left(\sqrt[3]{y^2}\sqrt{y^6}\right)\left(\frac{\sqrt[4]{y^4}}{\sqrt[6]{y^6}}\right)
= \left(\sqrt[3]{y^2y^6}\right)\left(\frac{y^2}{y^{1/3}}\right) \text{ (Resolviendo raíces)}
\]

\[
= \left(\sqrt[3]{y^{8/3}}\right) \left(\text{aplicando producto y cociente de potencias de igual base}\right)
\]

\[
= y^2 \cdot y^{-1} \text{ (Resolviendo raíces)}
\]

\[
= y \text{ (Aplicando producto de potencias de igual base)}
\]